1st Edition

Dynamic Water-System Control



ISBN 9789054104315
Published January 31, 1997 by CRC Press
334 Pages

USD $235.00

Prices & shipping based on shipping country


Preview

Book Description

Typically a large number of interests with conflicting requirements are involved in the management of a water system. The computer-based method of management introduced in this text - dynamic control - is designed to determine the most effective operational strategy.

Table of Contents

Preface -- Acknowledgments -- Summary -- 1. Introduction -- 1.1 Framework -- 1.1.1 Scope of Research -- 1.1.2 Objective of this Thesis -- 1.1.3 Outline of the Thesis and Conventions Used -- 1.2 Water-System Control in Historical Perspective -- 1.2.1 General -- 1.2.2 Polder Areas -- 1.2.3 Hilly Areas -- 1.2.4 Current Situation -- 1.3 Developments in Water-System Control -- 1.3.1 Lack of Capacity -- 1.3.2 The Operator’s Role -- 1.3.3 Automation of Control Systems -- 1.3.4 The Evolution of Water-System Control -- 1.3.5 Interest Weighing -- 1.4 Decision Making -- 1.5 Comparison with Similar Problems -- 1.6 Concluding Remarks -- 2. Decision Support and Control -- 2.1 Introduction -- 2.2 Developments and Use -- 2.3 Levels of Control -- 2.3.1 Decision-Support Level -- 2.3.2 Central-Control Level -- 2.3.3 Local-Control Level -- 2.4 Control-System Functionality -- 2.4.1 Operational Conditions -- 2.4.2 Strategy Determination -- 2.4.3 Central Control Tools -- 2.4.4 Command and Control Units -- 2.5 Concluding Remarks -- 3. Problem Formulation and Solving Methods -- 3.1 Introduction -- 3.2 Solving the Control Problem -- 3.2.1 Optimization Methods Applied -- 3.2.2 Mathematical Optimization -- 3.3 The Optimization Problem -- 3.4 Mathematical Optimization Methods -- 3.4.1 Types of Methods -- 3.4.2 Network Programming -- 3.4.3 Linear Programming -- 3.4.4 Successive Linear Programming -- 3.4.5 Dynamic Programming -- 3.4.6 Nonlinear Programming -- 3.4.7 Summary -- 3.5 Reasons for Choosing Successive Linear Programming -- 3.6 Simultaneous Simulation and Optimization -- 3.7 Concluding Remarks -- 4. SIMULATION OF REGIONAL WATER SYSTEMS -- 4.1 Introduction -- 4.2 Hydrology of Subsystems -- 4.2.1 Surface Types -- 4.2.2 Subsystem Interactions -- 4.2.3 Unsaturated Flows -- 4.3 Flow Elements of a Water System -- 4.3.1 Types of Elements -- 4.3.2 Pumping Stations -- 4.3.3 Weirs -- 4.3.4 Sluices -- 4.3.5 Inlets and Outlets -- 4.3.6 Canals -- 4.3.7 Groundwater -- 4.4 Concluding Remarks -- 5. HYDROLOGICAL LOAD -- 5.1 Introduction -- 5.2 Precipitation and Evaporation Analysis -- 5.2.1 Precipitation -- 5.2.2 Evaporation -- 5.3 Prediction of the Hydrological Load -- 5.3.1 Prediction for Water-System Analysis -- 5.3.2 Weather Forecasts for Real-Time Control -- 5.4 Concluding Remarks -- 6 Optimization Problem -- 6.1 Introduction -- 6.2 Formulating the Linearized Problem -- 6.2.1 The Linear Model -- 6.2.2 Forward Estimating -- 6.2.3 Interests Modeled in the Objective Function -- 6.2.4 Use of Damage Functions -- 6.2.5 Runoff Modeling -- 6.2.6 Network Model -- 6.2.7 Two Modeling Approaches -- 6.2.8 Choice of Approach -- 6.2.9 Frequently Used Relationships -- 6.2.10 Conventions Used -- 6.3 Subsystem Modeling -- 6.3.1 Groundwater -- 6.3.2 Surface Water -- 6.4 Flow-Element Modeling -- 6.4.1 Pumping Stations -- 6.4.2 Weirs -- 6.4.3 Sluices -- 6.4.4 Inlets -- 6.4.5 Canals -- 6.4.6 Groundwater -- 6.5 Mathematical Model Summary -- 6.5.1 Subsystems -- 6.5.2 Flow Elements -- 6.6 Concluding Remarks -- 7 Case Studies -- 7.1 Introduction -- 7.1.1 Main Objectives -- 7.1.2 Damage Functions and Interest Weighing -- 7.1.3 Hydrological-Load Prediction -- 7.1.4 Calibration and Accuracy -- 7.1.5 Assessing Dynamic Control -- 7.1.6 Forward Estimating Example -- 7.2 Delfland Case Study -- 7.2.1 Introduction -- 7.2.2 Water-System Description -- 7.2.3 Water Management -- 7.2.4 Water-System Analysis -- 7.2.5 Conclusions -- 7.3 De Drie Ambachten Case Study -- 7.3.1 Introduction -- 7.3.2 Water-System Description -- 7.3.3 Water Management -- 7.3.4 Water-System Analysis -- 7.3.5 Conclusions -- 7.4 Salland Case Study -- 7.4.1 Introduction -- 7.4.2 Water-System Description -- 7.4.3 Water Management -- 7.4.4 Water-System Analysis -- 7.4.5 Conclusions -- 7.5 Performance of the Method -- 7.5.1 General -- 7.5.2 Approach -- 7.5.3 Results -- 7.5.4 Sensitivity Analysis -- 7.6 Concluding Remarks -- 8 Water-System Design -- 8.1 Introduction -- 8.2 Methods Applied -- 8.2.1 Critical Discharge Method -- 8.2.2 Dynamic Discharge Method -- 8.3 Dynamic Design Procedure -- 8.3.1 Step-Wise Procedure -- 8.3.2 Dynamic Design Example -- 8.3.3 Advantages, Disadvantages and Improvements -- 8.4 Concluding Remarks -- 9 Conclusions and Recommendations -- 9.1 Conclusions -- 9.1.1 General -- 9.1.2 Water-System Capacity -- 9.1.3 Control Strategy -- 9.1.4 Optimization -- 9.1.5 Hydrological-Load Prediction -- 9.1.6 Interest Weighing -- 9.1.7 Dynamic Water-System Design -- 9.1.8 Practical Results -- 9.1.9 Application of Dynamic Control -- 9.2 Recommendations -- 9.2.1 Optimization -- 9.2.2 Interest Weighing -- 9.2.3 Hydrological Loads -- 9.2.4 Process Descriptions -- 9.2.5 Water Preservation -- 9.2.6 Determining Logic Rules -- 9.2.7 Filtering of Monitoring Data -- 9.2.8 Designing with Dynamics -- 9.2.9 Use of a DSS by Operators -- Glossary -- Abbreviations -- Symbols -- References.

...
View More